Oxygen Sensors: When O2 Sensors Age or Die

Oxygen Sensors: What Happens When O2 Sensors Age or Die?

Oxygen sensors are one of the most critical components of a modern engine because of their role in controlling the fuel-injection system and emissions coming from the tailpipe. Here’s a primer to help understand these sensors and their functions.

Oxygen sensors are one of the most critical components of a modern engine because of their role in controlling the fuel-injection system and emissions coming from the tailpipe. O2 sensors, as they are more commonly known today, were first developed by Bosch engineers in the late 1960s. Volvo was the first automaker to use O2 sensors in its 240/260 models that were built for the U.S. market in the late 1970s. To date, nearly 1 billion oxygen sensors have been sold by Bosch alone.

An O2 sensor works in conjunction with the PCM and other components such as mass airflow sensors to calculate the precise amount of fuel the injector should pulse into the cylinder for combustion to occur. The primary function is to maintain efficient combustion, and not be too lean or too rich. If the sensor detects unburned fuel, it will relay a voltage signal to the ECU telling it to reduce the amount of pulse width to the injectors (fuel), depending on the demand of the driver’s right foot and other conditions.

In a properly functioning closed-loop EFI system, the O2 sensor monitors the air/fuel ratio up to 100 times per second to make minor fuel-trim corrections. Fuel is either added or reduced to ensure that this ratio is ideal (14.7:1), helping the engine burn fuel more efficiently. Most oxygen sensors have a core made of zirconia, which helps produce voltage in relation to the amount of oxygen in the exhaust.

Evolution of O2 Sensors

The old-style oxygen sensor with a single wire evolved by adding a heater element that warmed it up to its operating temperature much quicker. These new heated sensors could be mounted downstream next to the catalytic converter, which was a more desired location anyway. When OBD II was implemented in 1996 to meet even stricter EPA requirements, O2 sensors were placed in more areas than ever to help speed up communication with the PCM. Most cars today use a narrow-band sensor, which only tells the computer whether the engine is rich or lean. However, some manufacturers are starting to use wide-band sensors in certain models to ensure more precise measurement of the air/fuel ratio. Today’s cars can have up to eight different O2 sensors, depending on the engine layout. There usually is one or two upstream (before the catalytic converter) and one downstream. The sensors measure the difference between upstream and downstream and check not only for unburned fuel but also the efficiency of the converter.

How long do o2 sensors last? Oxygen sensors have a limited lifespan. In the early days, Bosch could only keep the sensors alive for an hour. Thankfully, the lifespan today is much longer. Even still, the lifespan of a modern O2 sensor may be 60,000 to 90,000 miles. Cars with bad O2 sensors will activate a check-engine light and may idle rough and get poor fuel mileage because they’re operating in “open loop” to a pre-determined fuel map. Today’s O2 sensors also help control cars equipped with variable valve timing, so a bad sensor also can affect engine power.

An O2 sensor can be tested with a probe by attaching one lead to the signal wire and the other to ground to check for voltage. These sensors read an increase in oxygen as a lean condition and should produce close to 200 mV (0.20 V). The sensor is bad if it doesn’t respond or is slow to respond. In that case, a vacuum leak or some other component could be the culprit. Be sure the voltage is tested before replacing an O2 sensor; otherwise you’ll have an unhappy customer on your hands.

Brendan Baker

You May Also Like

The Evolution of Impact Wrench Technology

The hardest-working tool in the automotive industry has seen its share of updates and evolutions.

The Evolution of Impact Wrench Technology

Technology is defined as the application of scientific knowledge for practical purposes, especially in industry. We often picture technology as something that has computers and electronics attached, and often it does. But, in the world of impacts, both in the realm of pneumatic and cordless, technology bears much deeper roots. Let’s dig in and look at the core of impact design, along with some of the latest engineering, for the hardest working tool in the automotive industry.

Unlocking Service Drive Revenue: The Critical Role of Technician Inspections

The true potential of service consulting lies in recognizing the nuanced art of quality inspections and leveraging it to drive success for both advisors and technicians.

Unlocking Service Drive Revenue: The Critical Role of Technician Inspections
Addressing the Technician Shortage with Innovative Training Solutions

Drawing on extensive industry experience, the team at DealerPRO Training has developed a program that exposes technicians to future career opportunities in fixed operations as well as executive positions.

DealerPRO training
Dealership GMs Need Fewer Worries; Start Here: Recon and Appraisal Integrity

How do you manage margin compression? With a focus on predictable outcomes.

Dealership GMs Need Fewer Worries; Start Here: Recon and Appraisal Integrity
Enhancing Accessory Offerings and Car Care Products in Service Centers

By expanding product offerings, identifying top-selling items and leveraging private-label products, dealerships can create value for customers, drive revenue growth and strengthen their competitive position in the automotive industry.

Enhancing Accessory Offerings and Car Care Products in Service Centers

Other Posts

Rislone’s DEF Crystal Clean Helps Get Customers Out of Limp Mode

New product removes damaging crystals from SCR systems and clears P20EE codes.

New Rislone DEF Crystal Clean™ Diesel DEF & SCR Emissions System Cleaner scrubs away crystal contaminants from the selective catalytic reduction (SCR) systems of diesel cars, trucks, and SUVs to cost-effectively restore power and performance.
Ford Dealers, Ford Fund Invest $2 Million To Train Future Auto Techs

The Ford Auto Tech Scholarship will grant 400 need-based awards to current or future students enrolled in post-secondary auto programs.

Ford dealers and Ford Fund, the philanthropic arm of Ford Motor Company, are investing $2 million in scholarship funding in 10 regions to help students pursue careers as automotive technicians.
USO, UTI Partner to Support Service Members’ Career Transitions

A highlight of the collaboration includes networking support with industry leaders to help facilitate training and job placement.

USO, UTI Partner to Support Service Members' Career Transitions
Why Do Vehicles Go Out of Alignment?

If camber, caster or toe are out of specifications, there is usually a reason why.