Preventing Brake Comebacks

Preventing Brake Comebacks

When machining a rotor, you have two primary goals: provide a smooth surface finish for the pads and provide a true surface finish.

Installing new rotors without ever measuring and documenting the condition of the old rotor is like playing chicken with a comeback. Sooner rather than later, you will find a vehicle that will not be magically fixed by a new set of rotors. In fact, blindly replacing the rotors can cause you to falsely blame your parts suppliers. 

Some people think that installing new rotors without measuring for runout will eliminate all possibilities of a comeback for noise, judder or pulsation. However, this myth creates more comebacks than it solves. It is a cycle for some shops that starts with blaming the new pads after the customer complains of a pulsation problem or noise. 

Technicians start to blame the new rotors not being able to take the heat. It is not until someone pulls out a dial indicator and micrometer to find out the wheel bearing flange is the culprit.

After the rotor is resurfaced or a new rotor is installed, the rotor should be measured for runout as a quality-control measure. A new rotor could have excessive runout when it is installed on the vehicle due to a stacking of tolerances. 

Runout is defined as the amount of lateral (side-to-side) movement of the rotor as it rotates 360°. The specification is usually provided as “TIR” or “total indicated runout.” TIR is defined as the runout measured on the vehicle or installed runout. This means that the rotor should be measured with conical washers and the lug nuts installed to the factory specification.  

You could also call TIR the stacked runout of the hub/rotor/wheel assembly. All of the above factors add up to create the rotor’s TIR. This brings up an important point. The average allowable TIR specification for late-model vehicles is between 0.001 and 0.003 in. This is the maximum allowed! Some manufacturers have specified 0.000 in. of runout. Runout will not cause pedal pulsation on vehicles with floating or sliding calipers and the caliper housing is free to move and the runout is not excessive. 

Using conical washers like these can hold the rotor to the flange like the wheels. This can give you the total indicated runout (TIR). 

Under these conditions, the caliper will “follow” the runout, such that the caliper housing will move in and out in relation to the runout. This movement will not cause the caliper piston to move. This is a key point to understand. No piston movement results in no fluid movement in the hydraulic system. If there is no fluid movement, the brake pedal won’t move or pulsate. So, a key point to understand is that runout generally does not cause pulsation. Runout causes thickness variation that leads to pulsation problems. 

The main culprit of chronic pulsation was variations in disc thickness, or parallelism. The two friction surfaces of a rotor are designed to be parallel to one another within a certain specification. The allowable tolerance is known as parallelism. It is also known as the rotor’s disc thickness variation, or DTV. In order for the pad to stay in contact with the rotor, the piston must extend or be pushed back into the housing as force is applied. This creates the pulsation in the pedal that is most noticeable to the driver. 

Every time the low spot passes by the caliper, hydraulic pressure at the caliper drops. This produces less braking force as this area passes by the pads. This also can affect braking distances. 

The high and low spots of the rotor are the source of thickness variation.  

In some cases with excessive runout, a new rotor should be machined to match the vehicle. It has often been said that you should never machine new rotors. But, what if the runout exceeds the manufacturer’s specifications when the new rotor is installed on the vehicle? This is when it is permissible to machine a new rotor with an on-the-car brake lathe. This helps to match the rotors to the hub flange. 

Using an on-the-car lathe can help to reduce runout on new rotors. The main advantage of these lathes is that they are able to cut a rotor in its operating plane. This means that the rotor is machined to match the hub. 

Even if you use new rotors, your chance of a pulsation comeback could be greater than if you left the old rotors on the vehicle. Runout in the hub and new rotor can stack up to cause DTV — the main cause of pulsation — within a few thousand miles. 

Runout that’s greater than 0.005 in. (±0.001 in., depending on the rotor or flange diameter) is a sign that the flange, rotor and/or bearing should be replaced. The needle of the dial indicator should be perpendicular to the rotor. Measurements should be taken a quarter inch from the edge. 

Flange runout can be corrected with tapered shims to address a runout of 0.003 in. (0.075 mm) to 0.009 in. (0.230 mm). A runout of more than 0.005 in. (0.125 mm) at the bearing flange cannot be corrected by the use of a shim. The combination of rotor and bearing flange could prevent the rotor from being turned. You should check bearing flange runout after friction surface runout. This can be done by changing the rotor position 180º on the bearing. If the high spot changes 180º, the rotor could be OK or ready to turn after the bearing is shimmed. 

New rotors are only as good as the flanges they are installed on. Flanges that have corrosion and pitting can cause runout. a space Even as small as a piece of copier paper between the rotor and flange can cause 0.001 in. of runout. 

PRODUCTIVITY 

Cutting a rotor in one pass is essential for productivity. For non-composite rotors, it is possible to take as much as 0.020 in. per side while still having an acceptable finish. However, with a composite rotor or one with hard spots, the depth should be reduced, likely below 0.010 in. per side for a quality finish. In order to remove this much material, it is essential to have sharp bits. 

Cutting too fast will reduce the cut quality and possibly create chatter. A larger diameter rotor will need to turn slower than a small diameter one. 

Single-speed lathes are set at the slower speed of the largest application they are designed to cut. This is usually around 0.002 in. per revolution. 

When machining a rotor, you have two primary goals: provide a smooth surface finish for the pads and provide a true surface finish. Poor rotor finish can lead to noise. Never use the ballpoint pen measurement method when machining rotors. The only real way to measure is with a profilometer that measures the roughness average. But this tool is very expensive and very fragile. The best way to make sure a lathe is cutting rotors the right way is to make sure your cutting bits are fresh, adapters are true and the crossfeed is set properly.  

You May Also Like

Rislone’s DEF Crystal Clean Helps Get Customers Out of Limp Mode

New product removes damaging crystals from SCR systems and clears P20EE codes.

New Rislone DEF Crystal Clean™ Diesel DEF & SCR Emissions System Cleaner scrubs away crystal contaminants from the selective catalytic reduction (SCR) systems of diesel cars, trucks, and SUVs to cost-effectively restore power and performance.

Rislone introduces DEF Crystal Clean Diesel DEF & SCR Emissions System Cleaner, which scrubs away crystal contaminants from the selective catalytic reduction (SCR) systems of diesel cars, trucks and SUVs to cost-effectively restore power and performance.

Modern diesel vehicles are equipped with SCR systems to reduce exhaust pollutants and meet stringent diesel emissions standards. These systems inject diesel exhaust fluid (DEF) into the exhaust gas to convert harmful nitrogen oxides (NOx) into nitrogen and water.

Ford Dealers, Ford Fund Invest $2 Million To Train Future Auto Techs

The Ford Auto Tech Scholarship will grant 400 need-based awards to current or future students enrolled in post-secondary auto programs.

Ford dealers and Ford Fund, the philanthropic arm of Ford Motor Company, are investing $2 million in scholarship funding in 10 regions to help students pursue careers as automotive technicians.
USO, UTI Partner to Support Service Members’ Career Transitions

A highlight of the collaboration includes networking support with industry leaders to help facilitate training and job placement.

USO, UTI Partner to Support Service Members' Career Transitions
Why Do Vehicles Go Out of Alignment?

If camber, caster or toe are out of specifications, there is usually a reason why.

Hunter Engineering: ADAS Calibration & Connectivity Drive Growth

Hunter’s Pete Liebetreu explains the company’s Ultimate ADAS system, its areas of growth and its outlook on wheel service for EVs.

Hunter's Pete Liebetreu explains the company's Ultimate ADAS system, its areas of growth and its outlook on wheel service for EVs.

Other Posts

Selecting the Ideal Car Lift for EV Servicing

When choosing the right car lift for servicing electric vehicles there are several key factors to consider.

Key Factors in Selecting the Ideal Car Lift for Electric Vehicle Servicing- Coats
Mayhew Introduces 14-Piece Micro Hand Tool Set

This new set is a compilation of all the current micro line products, including pry bars, picks, hooks and screwdrivers.

This new set is a compilation of all the current micro line products from Mayhew; including pry bars, picks, hooks and screwdrivers.
BendPak Offers Space-Saving Full-Rise Scissor Lift

The new BendPak SP-7XE Series of full-rise scissor lifts provides the performance and undercarriage access of traditional two-post lifts in a more compact, space-saving package.

The new BendPak SP-7XE Series of full-rise scissor lifts provides the performance and undercarriage access of traditional two-post lifts in a more compact, space-saving package. Floor- and flush-mount models of this frame-engaging lift are available.
Hunter Engineering Wins Optimizely Award

Hunter employed several Optimizely products to help provide exceptional customer experiences. With the assistance of Optimizely CMS, Hunter’s corporate website Hunter.com saw a 70% increase in monthly average pageviews.

Hunter Engineering Wins Optimizely Award